PROLIFİK SAKIZ KOYUNLARINDA ÖSTRUS SİKLUSUNDA PLAZMA FSH VE LH DÜZEYLERİ

Plasma FSH and LH Concentrations During the Estrus Cycle of Prolific Sakiz Sheep

Bülent GÜVEN¹² Semin ÖZSAR² Erdal SABAN³ Muzaffer ÇELEBI³
Kenan ÇOYAN⁴ Murat BUDANIR⁵ Heinrich H.D. MEYER⁶

ÖZET

Bu çalışmada, Sakiz koyunlarında gonadotropin (FSH,LH) konstant-rasyonları ile çok yakıv verimi arasındaki iliği arastırmak amaçlanmıştır.

Değerlendirmeler sonucu gruplardaki LH ve FSH konsantrasyonları bakımından önemli bir fark bulunmadı (p>0.5).

Anahtar Sözcüklər: Prolific, Sakiz Koyunu, FSH, LH.

SUMMARY

In this study, it was aimed to investigate a possible relationship between gonadotrophin (FSH, LH) concentrations and prolificacy in Sakiz sheep.

Sixteen prolific Sakiz sheep having litter size, according to previous records, of 1,2,3,4 and 10 Akkaraman sheep as control were used in the study. At the beginning of the breeding season, ewes were synchronized by insertion of progesterone impregnated vaginal sponges for 14 days. Following the first estrous cycle after sponge removal, the ewes were bled via the jugular cannulae at 15 minute intervals for the duration of 6 hr on days 0 (estrus), 9 and 16 of the second estrus cycle. Plasma progesterone, LH and FSH concentrations were determined using double antibody enzyme immunoassay.

No significant differences (p>0.5) in gonadotrophin concentrations were found between groups.

Key Words: Prolific, Sakiz Sheep, FSH, LH.

GİRİŞ

Koyun yetiştiriciliğinde üretimi artırmak ana hedeflerden birisidir ve ovulasyon sayısı koyunlarda bütün üreme potansiyelinin en önemli kısımdır. Koyunlardaki yavru sayısı hem genetik hem de çevresel faktörlerle kontrol edilir (1).

Domestik koyun ırklarının çoğunun yavrulama başına bir veya iki yavrusu olurken, bazı nadir ırklar Booroola Merin, Cambridge, D'Man Romanov, Finnish ve Landrace'da üç veya daha fazladır. Yavru sayısı artırmanın için ırmık içerisinde yapılan çalışmalar sonucu çok yüksek ilerlemeler kaydedilmiştir. Çünkü yavru sayısının herhangi bir değişiklik durumunda olduğu gibi büyük bilim çarpıtı ve melezleme yapmakta. Booroola ırkına keşfedilen tek bir gen (F geni, fakultatif geni) bu tür yetiştiriciliğe yeni ufuklar açmıştır (6). Booroola merinoslarında böyle bir genin varlığı ilk defa 1980 yılında ortaya atılmıştır (1). O zamandan beri, koyunlardaki ırmık etkileyen diğer mu-
tasyonların araştırılması yoğunluk kazanmıştır (3.4).

Davis et al.(3) Booroola'da ovulasyon sayısı açısından 3 farklı genotip tanımlanmıştır. Ovulasyon sayısı > 5 olanlar (FF), 3-4 olanlar (F+), 1-2 olanlar (++). Bu sonuçlar, tekrarlanan en az 3 gözlem sonucu elde edilmiştir. Booroola da felç altında geni (FecB) taşıyıcı ve taşıyıcı olmayanlar arasında ovulasyon sayısı bakımından büyük farklılıklar olmasa karşılık, sorunlu fizyolojik olaylar aydınlaşma kavuşturulamamıştır(5). Günümüzde her iki genotipin de eş görülüğü bilgilendirilmiştir. Çünkü, östrasiklus uzunlukları (16-18 gün), östras aktivitesi süresi (yaklaşık 33 saat), östrasin göźükmesi ise ovulasyon öncesi ilk LH piki arasındaki süre (8-11 saat) ve ovulasyon öncesi LH pikinin süresi aynı olarak tespit edilmiş, yine disjiderle mevsimsel östras aktivitesinin süresi olarak bir farklılık bulunmuştur. Bununla beraber, hipotalamik-pituitary-ovaryum ilişkisi ile ilgili yapılan yoğun çalışmalar sonucu FecB geni açısından farklılıklar teşbit edilmiştir(6-11). Bu farklılıklar hormon sentezi, muhafazası ve salının düzeyinde ortaya çıkmaktadır. Ayrıca gelişen ovulasyon follicülleri'nin fonksiyonunda ve morfolojisinde de bu farklılık gösterilmiştir (10,12,13).

Koyunlarda >2mm çaplı follicüllerin büyümeleri akut olarak gonadotropinlere bağlıdır (14-16). Bununla beraber, farklı rklarda ovulasyon yapan ovaryum follicüllerine hangi rklarda gonadotropinler kattrık bulunduğuna açıklık kazanılmamıştır ve çeşitli sonuçlar bilgilendirilmiştir. LH'nın ovulasyon sayısını kontrol etmede yer almadığında (17) dair genel bir fırk birliğiño rağmen, proliferif ve proliferif olmayan koyunlarda FSH konsantrasyonlarında farklılık bulunmaktadır. Lokal kontrollarına göre proliferik D'Man(9) ve Booroola'da (6) follicüller fazda daha yüksek FSH konsantrasyonları bilgilendirilmiştir. Tersine, diğer rklarda FSH’nın böyle bir üstünlüğe rastlanmamıştır. Proliferik Romanov ile non-proliferif ile de France (18); proliferik FSH ile proliferif olmayan Suffolk rkları arasında olduğu gibi (19).

Son çalışmalar koyunlardaki ovulasyon sayımsının, erken follicüller fazda, FSH konsantrasyonlarının kısa süreli yükselmesiyle artırılabiliceğini göstermiştir (20). Booroola merinosolandaki çalışmalarında, F geninin muhtemelen bu yolda fonksiyon gösterdiği ileri sürülmektedir.

Bu çalışmada ülkemizde yetiştirilen Sakız koyunlarında çökü doğum özelliğinin hormon parametrelerine olan ilişkisinin araştırılması amaçlanmıştır. Bu bağlamda daha önceki yarış sayısını kısaltma veren siniflandırılmış Sakız koyunları ve Akkaramanlar arasında FSH ve LH yönünden bir fark olup olmadığı araştırılmıştır.

MATERIYAL ve METOT

Saha Çalışması

TİĞEM Kunakale Tarım İşletmesi Müdürülüğü'nde (Çanakkale) bulunan 1,2,3,4 yarış doğuran 3-5 yaşındaki Sakız koyunlara 4'er tane seçilerek toplam 16 hayvanda çalışılmıştır. Hayvanlardan kan alınımı kolaylaştırılmak için Haziran ayında tüm koyunlara Medroxyprogesterone acetat (MPA) ihvı eden vaginal sütner takıldı ve 14 gün sonra sütnerler çıkarılıdı. Sütner çıkarımı takip eden ikinci sıklık başına koyunların jugular venine seksüel sıklıkta 1,9 ve 16, günlerinde cateter takıldı ve 6 saat süre ile her 15 dakikada bir kan alınmıştı. Ayrıca kan alınması günde bir kez olmak üzere iki sıklık süresince devam edildi. Alınan kanlar hemen santrifüje edilerek plazmaları -20 0°Cde saklandı. Kontrol grubu olarak 10 adet Akkaraman koyununda da Sakız koyunlardaki kan aba işlemi uygulandı.

OVINE LH (oLH) HORMONUNUN EIA İLE TAYINI

oLH Hormonunun Biotinle İşaretlenmesi

320 mikrogram oLH, 250 mikrolitre PBS pH 7.5 içinde çözüldü ve 90 mikrogram D-Biotinyl-aminocaproic asit N-hydroxysuccimide ester (20 mikrolitre N, N-dimethylformamidde içinde) ile reaksiyonu sokuldu. Reaksiyonu 4 h oda ısıtında devam edildi ve reaksiyon 0.1 mg glycine ile durduruldu. Oda ısıtında 4 h'lik bir inkübasyondan sonra karışıma 1.0 mg Bovine Serum Albumin (BSA) ilave edildi ve karışım 1 gün +40°Cde dialize edildi. Dialize edilen biotinyl-oLH konjugatı alifotolara ayrılarak -70 0°Cde depolandi.
Testin Yapılışı

Mikrotitrasyon plakları kuyu başına 1.2 mikrogram olacak şekilde anti-tavşan IgG-keçi IgG ile +4 0°C'de bir gece inkübe edildi. Plak daha sonra % 0.1 albumin ıhtiva eden fosfat tampon ile 60 dk. oda ısısında inkübe edildi. Anti tavşan IgG-keçi IgG ile kaplanan plaklara 20 mikrogram örnek veya standart (50-1.56 ng LH/ml), 100 mikrolitre oLH antiserumu (1:250,000 oranında fosfat tampon ile dilüe edildi) pipetlendi ve plak 2 gün + 4 0°C'de inkübe edildi. Tekrar içeriği boşaltılan plaga 20 ng/100 mikrolitre streptavidin-peroxidase konjugatı konuldu ve plak + 4 0°C'de 20 dk inkübe edildi. Bu inkübsiyondan sonra plak 4 kere yıkandı ve plaga 150 mikrolitre/kuyu substrat (%1 H2O2, % 0.6 3,3', 5,5' tetramethylbenzidine) konuldu ve reaksiyon 40 dk. sonra 4 N H2SO4 ile durdurularak oluşan renk 450 nm'de fotometrede okundu.

OVINE FSH (oFSH) HORMONUNUN EIA İLE TAYINI

oFSH (USDA-oFSH-19-SISFP-2), oFSH antiserumu (NIDDK-anti-oFSH-1) ve oFSH referansı (NIDDK-oFSH-RP-1) National Hormone and Pituitary Program, National Institute of Diabetes and Digestive and Kidney Diseases USA'dan (NIDDK) elde edildi. oFSH hormonu oLH-EIA'daki aynı yöntemle işaretlenid ve saflaştırıldı.

oFSH hormonunun EIA ile tayininde oLH-EIA'daki aynı yöntem uygulandı. Bu testte oFSH antiserumu 1:20.000 dilüsyonda ve biotinyl-oFSH 60 ng/kuyu olarak kullanıldı.

PROGESTERONUN EIA İLE TAYINI

Serumda progesteron düzeyleri mikrotitrasyon plak EIA yöntemi ile Prakash et al. (21) in bildirdiği yönteme göre analiz edildi.

BULGULAR

Sakız koyunlarının (teki, ikiz, üçüz ve dürdüz doğum yapan) ve Akkaraman koyunlarının östrus süreklisinin 0.9 ve 16. günlerinde 6 saat süre ile her 15 dakikada bir toplanan 24 plazma örneğindeki FSH ve LH düzeyleri 1.2, 3.4 ve 5 de gösterildi. FSH ve LH de verilende gözle görünen bazı bireysel farklılıklar bulunmaktadır birlikte ortalama değerler arasında, Tablo 1'de görüldüğü gibi istatistiksel olarak önemli bir fark bulunmamıştır.

FSH ve LH konsantrasyonlarının EIA ile tayinlerinde testlerin kontrolleri yapılmış, deneyi ve deneylerarası varyasyon katsayılı Tablo 2 ve 3'de, sensitivite değerleri Tablo 4 de gösterilmektedir.

Tablo 1: Akkaraman ve Sakız Koyunlarının Sıkışın 0., 9. ve 16. günlerindeki FSH ve LH degerlerinin önem kontrolü

<table>
<thead>
<tr>
<th>Sıklık Günü</th>
<th>Hormon</th>
<th>t</th>
<th>Serbestlik Derecesi</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>oFSH</td>
<td>0.577</td>
<td>118</td>
<td>P>0.5</td>
</tr>
<tr>
<td>0</td>
<td>oLH</td>
<td>0.637</td>
<td>118</td>
<td>P>0.5</td>
</tr>
<tr>
<td>9</td>
<td>oFSH</td>
<td>0.337</td>
<td>118</td>
<td>P>0.5</td>
</tr>
<tr>
<td>9</td>
<td>oLH</td>
<td>0.442</td>
<td>118</td>
<td>P>0.5</td>
</tr>
<tr>
<td>16</td>
<td>oFSH</td>
<td>0.724</td>
<td>118</td>
<td>P>0.5</td>
</tr>
<tr>
<td>16</td>
<td>oLH</td>
<td>0.200</td>
<td>118</td>
<td>P>0.5</td>
</tr>
</tbody>
</table>

Tablo 2: Hormon testlerinin (EIA) deneyi varyasyon katsayları

<table>
<thead>
<tr>
<th>Hormon</th>
<th>n</th>
<th>X (ng/ml)</th>
<th>CV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progesteron</td>
<td>18</td>
<td>0.49</td>
<td>12.6</td>
</tr>
<tr>
<td>Progesteron</td>
<td>18</td>
<td>6.4</td>
<td>7.8</td>
</tr>
<tr>
<td>oLH</td>
<td>25</td>
<td>3.6</td>
<td>9.7</td>
</tr>
<tr>
<td>oLH</td>
<td>26</td>
<td>25.8</td>
<td>12.6</td>
</tr>
</tbody>
</table>
Tablo 3: Hormon testlerinin (EIA) deneyleriarası varyasyon katsayları

<table>
<thead>
<tr>
<th>Hormon</th>
<th>n</th>
<th>X (ng/ml)</th>
<th>CV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progesteron</td>
<td>15</td>
<td>1.1</td>
<td>9.3</td>
</tr>
<tr>
<td>Progesteron</td>
<td>15</td>
<td>5.2</td>
<td>5.8</td>
</tr>
<tr>
<td>oLH</td>
<td>21</td>
<td>6.3</td>
<td>13.4</td>
</tr>
<tr>
<td>oLH</td>
<td>24</td>
<td>32.7</td>
<td>6.7</td>
</tr>
<tr>
<td>oFSH</td>
<td>22</td>
<td>9.8</td>
<td>13.8</td>
</tr>
<tr>
<td>oFSH</td>
<td>23</td>
<td>55.7</td>
<td>9.7</td>
</tr>
<tr>
<td>E2 17-Beta</td>
<td>15</td>
<td>0.038</td>
<td>17.3</td>
</tr>
<tr>
<td>E2 17-Beta</td>
<td>14</td>
<td>0.228</td>
<td>14.7</td>
</tr>
</tbody>
</table>

Tablo 2: Hormon testlerinin (EIA) deneyiçi varyasyon katsayları

<table>
<thead>
<tr>
<th>Hormon</th>
<th>Hassasiyeti</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progesteron</td>
<td>0.25 pg/kuyu</td>
</tr>
<tr>
<td>E2 17-Beta</td>
<td>0.20 pg/kuyu</td>
</tr>
<tr>
<td>oFSH</td>
<td>31.0 pg/kuyu</td>
</tr>
<tr>
<td>oLH</td>
<td>31.0 pg/kuyu</td>
</tr>
</tbody>
</table>

Şekil 1. Akkaraman kızkoyunun sekstuel siklusun 0., 9. gün (A), 9. gün (B) ve 16. gün (C)´lerinde 6 saat süre ile her 15 dakikada bir toplanan 24 adet plazma örneklerindeki FSH ve LH düzeyleri
Şekil 2. Tek yavru doğuran Sakız koyunun seksüel siklusun 0. gün (A), 9. gün (B) ve 16. gün (C)’lerinde 6 saat süre ile her 15 dakikada bir toplanan 24 adet plazma örnekindeki FSH ve LH düzeyleri

Şekil 3. İkiz doğum yapan Sakız koyunun seksüel siklusun 0. gün (A), 9. gün (B) ve 16. gün (C)’lerinde 6 saat süre ile her 15 dakikada bir toplanan 24 adet plazma örnekindeki FSH ve LH düzeyleri
Şekil 4. Üçüz doğum yapan Sakız koyunun seksüel siklusun 0. gün (A), 9. gün (B) ve 16. gün (C)'lerinde 6 saat süre ile her 15 dakikada bir toplanan 24 adet plazma örneğindeki FSH ve LH düzeyleri

Şekil 5. Dördüz doğum yapan Sakız koyunun seksüel siklusun 0. gün (A), 9. gün (B) ve 16. gün (C)'lerinde 6 saat süre ile her 15 dakikada bir toplanan 24 adet plazma örneğindeki FSH ve LH düzeyleri
TARTIŞMA ve SONUC

KAYNAKLAN

10. McNatty, K.P., Hudson, N., Henderson, K.M., Gibb, M., Morrison, L., Ball, K. and Smith, P. Differences in gonadotropin concentrations and pituitary responsiveness to GnRH between Booroola ewes which were homozygous (FF), heterozygous (F+) and non-carriers (+/-) of a major gene influencing their ovulation rate. J. Reprod. Fert., 80, 577-588, (1987).

