Abstract
The aim of this research was to compare rectal, eye and ear temperature of 30 healthy Kangal dogs. Rectal temperature was measured by use of standard rectal digital thermometer. Right and left eye temperatures were detected by infrared thermal camera from the carancula lacrimalis region. Tympanic thermometer was used to determine right and left ear temperatures. Data were analyzed by Pearson correlation test. The comparative analysis showed no significant differences between the measurement methods. Measuring of ear and eye temperature could be an alternative method to obtain body temperature in Kangal dogs.

Keywords: Body temperature, Rectal temperature, Eye, Ear, Kangal dog

INTRODUCTION
Measuring of the body temperature is the crucial part of the canine physical examination. Digital rectal thermometer is the most commonly used tool to detect body temperature in dogs. However, it has some disadvantages such as time consuming, difficult to achieve in aggressive dogs, which could result with rectal injury, and impossibility in cases of atresia ani [1]. Alternative methods to detect body temperature are useful both patients and clinicians. Thermal microchips and infrared thermometers are used to measure body core temperature in dogs. However, the major disadvantage of microchip thermometry is necessity of equipment [2].

Infrared thermography is a noninvasive technique that detects temperature differences in a region. It has been pointed that eye temperature can reflect the core body temperature. Moreover infrared thermography can be used to detect body temperature without touching or disturbing the animal [3].

Measuring of the ear temperature in veterinary medicine is a new, rapid and also economic technique. It has superiority on rectal temperature (RT) in some instances such as fractious dogs or those with recto-anal disease. However, the major limitations include ear diseases or inflammation and some dogs refuse placement of the probe [4].

Even though numerous researches have been conducted on Kangal dogs [5,6], to the authors’ knowledge, there is no scientific data about measurement results of their eye and ear temperatures. Therefore, the aim of this study was to determine the difference between rectal, eye and ear temperatures in Kangal dogs.
MATERIAL and METHODS

Animals

Thirty male Kangal dogs (6-12 months old, mean body weight 40±9 kg) were enrolled in the study, which were brought to veterinary clinics at Ataturk University for various purposes; including routine physical examination, vaccinations and neutering. Each dog was healthy based on the physical examination. Measurements were collected at time between 9 am and 3 pm.

Measurements

Temperature measurements were obtained in a room, which had 25.3±1.1°C mean temperature, 58.0±8.0% relative air humidity and no direct sunshine. Before measurements, each dog was acclimatized in this room for 20 min.

Three different sources were used to determine dog temperature: rectal, eye and ear. Rectal temperatures were collected with a conventional digital thermometer from the dogs restrained by their owners. Digital rectal thermometer was inserted about 2 cm into the rectum, and it remained until the audible beep was heard.

Eye temperatures were obtained with infrared thermal camera (IR FlexCam S, Infrared Solutions Inc., Plymouth, MN, USA). Measurements were recorded when the infrared thermal camera was placed at a 1 meter distance from each dog. The dog was restrained by owners for 2 seconds to measure the eye temperature, and then eye temperature was obtained focusing on caruncula lacrimalis region by thermal camera.

Ear temperatures were obtained by infrared tympanic thermometer (Genius 2 Tympanic Thermometer, Covidien Ilc, Mansfield, USA) when the animal was restrained by owner. To measure the tympanic temperature of each ear, tympanic thermometer was inserted in the ear canal descending to the eardrum. After pressing the activation button, auricular temperature was appeared within 2 seconds.

Statistical Analysis

All data were analyzed using the SPSS 19 (IBM Company, Version 19.0, SPSS Inc, USA, 2010) statistical package. Data were presented as the average of the right tympanic temperature (RTT), left tympanic temperature (LTT), right caruncula lacrimalis temperature (RCT), left caruncula lacrimalis temperature (LCT) and RT. Differences among RTT, LTT, RCT, LCT and RT were analyzed by Pearson correlation test.

RESULTS

The consistency of RTT, LTT, RCT and LCT measurements versus to rectal temperatures are given in Fig. 1. The comparative statistical analysis results are shown in Table 1, which is indicated not significantly different results of

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean± SE (°C)</th>
<th>95% CI</th>
<th>RCT</th>
<th>LCT</th>
<th>RTT</th>
<th>LTT</th>
<th>RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCT</td>
<td>37.682±0.149</td>
<td>37.354</td>
<td>-</td>
<td>0.906**</td>
<td>0.485**</td>
<td>0.490**</td>
<td>0.569**</td>
</tr>
<tr>
<td>LCT</td>
<td>37.750±0.179</td>
<td>37.357</td>
<td>-</td>
<td>0.409*</td>
<td>0.459*</td>
<td>0.506**</td>
<td></td>
</tr>
<tr>
<td>RTT</td>
<td>37.940±0.168</td>
<td>37.570</td>
<td>38.311</td>
<td>0.739**</td>
<td>0.431*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LTT</td>
<td>37.920±0.191</td>
<td>37.499</td>
<td>38.341</td>
<td>0.368*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT</td>
<td>37.997±0.119</td>
<td>37.754</td>
<td>38.239</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

** P<0.001, * P<0.005
RTT, LTT, RCT, LCT and RT. Fig. 1 and Table 1 observe high positive correlations between RTT, LTT, RCT, LCT and RT.

DISCUSSION

Measuring of the RT is a conventional method to reveal the body temperature in dogs. It has emphasized that measurement of RT may not be possible in 1.9% dogs due to intolerance [4]. This ratio may be higher if there is a rectal or perianal disease. It was reported that tympanic temperature measurement (TTM) was well tolerated than RT in dogs [2,4]; moreover it has also been reported that several dogs displeased the aural probe more than the rectal probe [7]. In the current study all measurement methods were well tolerated by all dogs. The prior study [8] has revealed that, similar to our results, TMMs’ is easy to collect and rapid compared with RT.

Infrared thermography has been gaining popularity instead of surface temperature, and it does not need to direct contact with the patient [9]. Eye temperature is a more accurate and useful indicator of core body temperature [10]. It has been stated that direct sunlight could result in increased eye temperature [11]. We performed all thermographic measurements in a room without sunlight. As reported previously mean eye temperatures of horses was 32.6°C [11]; however, another study reported this ratio as 38.2°C, which was normal limit for horse temperature [3]. This diversity is due to measurements of different parts of the eye. Central corneal temperatures of dogs were ranged between 34.4°C and 35.2°C [9]. Moreover it has been pointed out that temperature of nasal limbus tends to be higher than other regions of eye because of increased blood flow [10]. In this study, we also noticed lower central cornea temperature than nasal limbus, but we did not collect the temperature from the central cornea which had lower temperatures than body core temperature [12]. Our temperature results obtained from carancula lacrimalis region correspond with rectal and tympanic temperatures.

In this study right and left tympanic temperature values showed strong similarity with RT. It has been reported that auricular temperature can be used to detect core body temperature in dogs [13]. On the other hand, a study on different breed dogs identified auricular temperatures have lower values than RT [14], which is disagreement with our findings. This discrepancy can probably due to breed differences and/or ear anatomy. Breed differences in body temperature have been reported in dogs [4,14]. It has been stated that sex do not affect the ear temperature [15], the current study was carried on only male dogs to prevent possible effects of temperature alterations.

Although current study did not focus on the selection of an advantageous method for obtaining body temperature, it was obvious that restriction of the dog by an assistant required in all methods. Measuring of eye temperature from the nasal limbus (carancula lacrimalis region) seems to more comfortable and safer than RT and TMM because it can be achieved without touching the animal. Moreover, TMM is easier than RT due to rapid detection of body temperature.

Measuring ear and eye temperature could be an alternative method to detect body temperature in Kangal dogs. It can be pointed out that further studies about body temperature techniques should be planned on other breeds and species.

REFERENCES