Analysis of Electrocardiographic Parameters in the Conscious Common Pheasants (*Phasianus colchicus*)

Mehmet KAYA 1,2 Sadettin Mehmet SOYLU 1

1 Department of Physiology, Faculty of Veterinary Medicine, Ondokuz Mayis University, TR-55139 Samsun - TURKEY

Makale Kodu (Article Code): KVFD-2013-9413

INTRODUCTION

An electrocardiogram is the record of the electrical activity generated by the heart. Electrocardiography (ECG) has been extensively used for diagnostic or research purposes in both human and animal species for more than a century. The first avian ECG study is dating back to the beginning of 20th century [1]. Despite this early start in avian ECG studies, it is not possible to find published reference values for some of the common avian species (e.g. pheasants). With the increasing popularity of bird species as a pet animal, the veterinarians more often

Keywords: Electrocardiography, Pheasant, Phasianus colchicus, Heart rate, Mean electrical axis
are confronted with cardiology cases in these species. The findings of ECG are commonly used in the accurate cardiac diagnosis in various bird species such as chicken [2-5], turkey [6-8], quail [4,9-10], duck [2,11], pigeon [2,12,13], parrot [14], and other species [15-17]. Electrocardiography is also used in monitoring cardiac and vital status during the anesthesia in birds [18-21]. However, ECGs obtained from anesthetized birds may not be applicable in un-anesthetized birds [8,22]. Therefore, obtaining the reference ECG patterns and values of unanesthetized birds would be useful.

The pheasant, originally native to Georgia, has been introduced all across the world as a game bird. The word pheasant is derived from the ancient river name Phasis, which flows from the Caucasus Mountains into the Black Sea [23]. The most well known is the “Common pheasant”, which is widespread throughout the world. In the United States and Europe, especially in the United Kingdom, there are many commercial pheasant breeding farms. In some parts of the world where pheasant population has dropped, efforts are being made to reintroduce farm-raised pheasants to wild. At Samsun, Turkey, a city located at the southern part of Black Sea, pheasants are raised at Gelemen Pheasant Production Station and dispatched to nature in an effort to support the pheasant population in this area.

In this study we wanted to create an ECG reference value from healthy conscious pheasants for the first time, to help the veterinarians in evaluating the heart disease profile of these birds.

MATERIAL and METHODS

Animals

In this study, a total of 24 mature and healthy pheasants (*Phasianus colchicus*) of both sexes (12 males, 12 females) were used. Body weights (BW) of male and female pheasants were 1257±117 g and 1021±181 g, respectively. Pheasants were 8-12 months old ages and were obtained from the Gelemen Pheasant Production Station, Samsun. Pheasants were brought from the station to the physiology laboratory within plastic transport cages. To acclimate to the laboratory environment, pheasants were kept in semi-darkness zone for 3 days. Pheasants received commercial feed mixtures and water *ad libitum*. This study was approved by the Local Ethics Committee of Samsun Veterinary Control Institute (Approval no: 30). It was not applied any invasive treatment to the animals.

ECG Recording

ECG recordings were performed at the same time of the day to eliminate changes derived from biorhythms. To minimize stress, all the procedures were carried out in a quiet and dim room and birds’ heads was covered with a thin cloth during the manipulation. The pheasants were gently placed on a rubber surface in a dorsal recumbent position. Throughout the recordings neither sedation nor anesthesia were used. Electrocardiograms were recorded with a portable electrocardiograph (Cardiette, ar600adv, Italy). Blinded alligator clip electrodes were attached after gel application to the skin at the base of the wings and to the skin overlying the stifle on the right and left sides. When optimal immobilization and good electrode contacts were obtained, ECG recordings were started (approximately within 5 min after the electrode placement). If a pheasant showed any movement, ECG recordings was discontinued until the movement ceased. The standard bipolar (I, II and III) and augmented unipolar (aVR, aVL and aVF) limb leads were recorded with a paper speed of 50 mm/sec. The lead II recordings run for at least 60 sec and all the other leads for 30 sec. Lead II was selected for the measurement of amplitude and duration of waves. Because of the small waveforms a double standard was used (20 mm equals to 1 mV). The mean heart rate (HR) was calculated by using the average of 10 consecutive RR intervals. The QRS waveforms were labeled according to the standard nomenclature: the major deflection was indicated by a capital letter and the minor deflections by lower case letters. Mean electrical axis (MEA) was calculated by using lead II and III as described by Edwards [24], since the QRS complex was not represented in Lead I. The morphologic patterns of P, QRS and T waves were evaluated for each lead. Amplitudes and durations of the waves, PQ/PR and QT intervals, and duration of ST segments were determined by the inspection of lead II.

Statistical Analysis

Mean, standard deviation (SD), minimum and maximum values were calculated by using the MINITAB statistical package (MINITAB Inc., State College, PA, USA). Data are presented as mean±SD. The amplitudes of waves and the duration of intervals, BW, HR and MEA were analyzed by one-way analysis of variance. The relationship BW and amplitudes of waves and, BW and durations of waves were determined by correlation analyses.

RESULTS

The vast majority of lead recordings were obtained without major artifacts. A regular sinus rhythm was observed in all birds. A representative ECG of a pheasant is shown in Fig. 1. P and T waves could not be evaluated in some leads in both genders because the waves were isoelectric (Table 1). In two female pheasants, the measurement of duration and amplitude of P and T waves in lead I, III, aVL, and in one bird only in lead I were almost impossible because of respiratory artifacts; therefore quantitative data for these leads were not evaluated. The remaining leads were regular and had assessable wave morphologies.

There was a significant difference between male (0.18
mV) and female pheasants (0.10 mV) in amplitudes of P waves (P=0.01) but durations were similar (Table 2). As shown in the Table 1, there were a total of five isoelectric P waves in the male pheasants and thirteen isoelectric P waves in the female pheasants. In all leads, P waves were mainly positive in both sexes except for lead aVR in which P waves were negative. The majority of P waves were biphasic in lead aVL in male pheasants at ratio of 8:12. There were four notched P waves in male (two waves in each lead II and III) and four waves in female birds (three waves in lead II and one wave in lead aVF). P waves were tall and pointed in shape in one male pheasant in lead II, III and aVF, and in another one in lead I and aVF.

The duration of PQ/PR and QT intervals were similar in both sexes (Table 2).

There was no significant difference between male and female birds in amplitude and duration of QRS complexes although both parameters were high in males than females (Table 2). The dominant waveforms of the QRS complexes were rS in lead II, III and aVF, and qR in lead aVR and aVL in both sexes. However, Rs, QS, Qr and R forms of
QRS complexes were observed in a small number of male and female pheasants in various leads (Table 1).

Both amplitude (P=0.002) and duration (P=0.004) of T waves were higher in male pheasants than females (Table 2). There were a total of five isoelectric T waves in male and 13 isoelectric T waves in female pheasants. Generally, T waves were positive in lead I, II, III, aVF and negative aVR and aVL in both sexes (Table 1). In five male pheasants T waves were notched in lead II and aVF, while in one male bird all the leads had notched T waves. In females, notched T waves were observed in only one bird on lead II and aVF.

Durations of ST segments were similar in both sexes. It ranged from 0.02 to 0.05 sec and 0.02 to 0.06 sec in male and females, respectively (Table 2). In the majority of the birds a slightly elevated ST segment was observed in lead II.

Average heart rate and MEA values were similar in male and female pheasants (Table 2).

DISCUSSION

This study was conducted at the Faculty of Veterinary Medicine in Samsun, Turkey (latitude 41° 13’ N, longitude 36° 29’ E). Anesthetics can alter ECG values by changing heart rate and QT interval [14,25]; hence no anesthetic or tranquilizing agents were applied in this study. Instead, ECGs were recorded in conscious pheasants by covering birds’ heads with a thin and dark-colored cloth. The recordings were performed approximately 5 min after the attachment of clips. This calming period allowed recordings were performed approximately 5 min after birds’ heads with a thin and dark-colored cloth. The ECGs were recorded in conscious pheasants by covering the attachment of clips. This calming period allowed recording of ECGs in conscious pheasants to obtain considerably proper ECG wave patterns in pheasants.

ECG values were similar in both sexes except for amplitudes of P and T waves, and duration of T waves. The amplitudes of P and T in male birds were higher than those of females (P=0.01 and P=0.002, respectively). Similar to our findings, Lopez-Murcia et al. [18] reported sex related differences in amplitudes of P, R and T waves in competition pigeon with the males having higher amplitudes than females. The author explains these differences with higher cardiac tissue mass of males than females due to the competition. But in our study, we could not attribute these differences to heart weight directly since the hearts of the birds were not weighed. However, in previous studies [26,27] a positive correlation between BW and heart weight were reported. From this point of view it can be expected that the heart weights of males would be greater than those of females since in this study, the BWs of males were significantly (1257 vs. 1020, P=0.001) higher than those of females. Therefore, the explanation of Lopez-Murcia et al. [13] about the amplitude differences in male and female pigeons could be applied to our result. However, there was no relationship between BW and amplitudes of P and T wave in correlation analysis (P=0.831 and P=0.299, respectively). Similar findings were reported in raptors [17] and in macaws [18] earlier by other authors. They pointed out that there is no significant relationship between BW and wave amplitudes in conscious raptors and macaws.

In this study, a total of 18 isoelectric P waves were observed in different leads and derivations, looking at the ECGs of all the pheasants. Uzun et al. [29] reported a similar finding where they detected five and eleven silent P waves in rock and chukar partridges, respectively. The P waves were dominantly positive in all leads except for lead aVR and only in male pheasants it was biphasic in lead aVL. In this respect, there is compatibility between our results and those findings reported by many authors [16,17,28,30]. On the other hand, Hassanpour et al. found that the P waves were mainly positive in all leads in green peafowl [31].

Table 2. Differences of systolic blood pressure (SBP) and diastolic blood pressure (DBP) between male and female pheasants

<table>
<thead>
<tr>
<th>Sex</th>
<th>Variation</th>
<th>P wave</th>
<th>P-Q/P-R Interval</th>
<th>QRS Complex</th>
<th>T Wave</th>
<th>Q-T Interval</th>
<th>S-T Segment</th>
<th>BPM</th>
<th>MEA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Amp</td>
<td>Dur</td>
<td>Amp</td>
<td>Dur</td>
<td>Amp</td>
<td>Dur</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>Mean</td>
<td>0.183</td>
<td>0.033</td>
<td>0.071</td>
<td>0.060</td>
<td>0.033</td>
<td>0.033</td>
<td>0.276</td>
<td>0.072</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0.101</td>
<td>0.008</td>
<td>0.012</td>
<td>0.247</td>
<td>0.006</td>
<td>0.013</td>
<td>0.017</td>
<td>0.008</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>0.000</td>
<td>0.020</td>
<td>0.050</td>
<td>-1.100</td>
<td>0.020</td>
<td>0.080</td>
<td>0.040</td>
<td>0.120</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>0.330</td>
<td>0.040</td>
<td>0.090</td>
<td>-0.250</td>
<td>0.040</td>
<td>0.450</td>
<td>0.100</td>
<td>0.180</td>
</tr>
<tr>
<td>Female</td>
<td>Mean</td>
<td>0.096</td>
<td>0.030</td>
<td>0.063</td>
<td>-0.450</td>
<td>0.028</td>
<td>0.137</td>
<td>0.051</td>
<td>0.134</td>
</tr>
<tr>
<td></td>
<td>SD</td>
<td>0.037</td>
<td>0.013</td>
<td>0.011</td>
<td>0.171</td>
<td>0.010</td>
<td>0.058</td>
<td>0.014</td>
<td>0.019</td>
</tr>
<tr>
<td></td>
<td>Min</td>
<td>0.000</td>
<td>0.010</td>
<td>0.050</td>
<td>-0.700</td>
<td>0.020</td>
<td>0.050</td>
<td>0.020</td>
<td>0.100</td>
</tr>
<tr>
<td></td>
<td>Max</td>
<td>0.150</td>
<td>0.060</td>
<td>0.080</td>
<td>-0.250</td>
<td>0.050</td>
<td>0.250</td>
<td>0.060</td>
<td>0.160</td>
</tr>
<tr>
<td>P value</td>
<td></td>
<td>0.010</td>
<td>NS</td>
<td>NS</td>
<td>NS</td>
<td>0.002</td>
<td>0.004</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

The amplitudes and durations are given in millivolt and second, respectively, SD: standard deviation, Min: minimum value, Max: maximum value, Amp: amplitude, Dur: duration, BPM: beats per minute, MEA: mean electrical axis (°), NS: no significance
and in helmeted guinea fowl [24]. Machida and Aohagi [33] reported that the P waves are generally biphasic in lead I and III, and positive in lead II. The amplitude of P wave in our study was higher than the value described by Uzun et al. [28] and Hassanpour et al. [31]; lower than the value notified by Casares et al. [15] and Lopez-Murcia et al. [13] and, similar to the value reported by Espino et al. [30] and Talavera et al. [17]. The mean P wave durations in lead II were 0.03 and 0.03 sec in male and female pheasants, respectively, which was fairly similar to the values reported by many authors [13,15,17,28,30]. We observed a total of eight notched P waves in birds. According to author’s knowledge, there was not any report on this phenomenon in avian species.

In this study, the QRS polarity was always negative in lead II, III and aVF, and positive in lead aVR and aVL. The QRS complex in lead I was either very low or isoelectric, and both negative and positive deflections were observed. The deflection of QRS complex in leads II, III and aVF was dominantly identified as the rS type. Likewise, in lead aVR and aVL the most frequent morphologies were QR. Our findings were almost similar to results obtained in many studies [15-17,28,30-32].

There was no Q wave in lead II and III, whereas Q wave was present in lead aVR and aVL in 22 of 24 pheasants. These results are confirmed by other ECG studies in birds [14,16,17,28-33]. The mean values of duration and amplitude of QRS complexes were similar to those reported previously in buzzards [30] but higher than those reported in pigeons [13].

T waves were always positive in lead I, II, III and aVF, and always negative in the other two leads. These findings of T wave morphology were similar to those reported in various birds [14,16,17,28-33].

The amplitudes and durations of T waves in males were higher than those of females. The amplitudes in our study were lower than those reported earlier in turkeys [29], macaws [15], in pigeons [13], in kestrels [17] and in peafowl [31], but were similar to those in buzzards [30] and some raptor species [17]. The mean duration of T wave was 0.07 and 0.05 sec in male and female, respectively in our study. The our result for duration of the T wave in males (0.072 sec) was similar to the finding in vultures of Talavera et al. [17] who studied in four raptor species without distinction of sex. Similarly, this parameter in kestrels, owls and eagle owls was consisted with that of females (0.05 sec) in our study. Otherwise, Espino et al. [30] mentioned that T wave durations in buzzards were 0.03 sec which was lower than our values. T wave values obtained in an ECG study in macaws [15] were fairly similar to our results. In a pigeon study, Uzun et al. [28] reported that the duration of T wave was approximately 0.05 sec, which is similar to those of females in our study, and Lopez-Murcia et al. [13] mentioned that this duration was an average of 0.03 sec, which is lower than our values. The duration of T waves in turkeys was reported by McKenzie et al. [29] as 0.08 sec, which was higher than those of these pheasants.

A normal sinus rhythm was assessed in all pheasants and no remarkable arrhythmia was found in our study in contrast with other studies on anesthetized birds [14,15]. The mean heart rates of male and female pheasants were similar and were 194 bpm and 236 bpm, respectively. The mean HR in this study was much lower than previously studied species: macaws [15]; buzzards [30]; peregrine falcon [16]; partridges [28]; pigeons [13]; Eurasian kestrel, little owl and Eurasian eagle owl [17] and green peafowl [31]. However, our values were fairly similar to those reported for streaked shearwater, night heron, grey heron, little egret, intermediated egret, large egret, Ural owl [33] and were higher than those mentioned for turkeys [29]; whooper swan, mallard, teal, spot-billed duck, great crested grebe [13] and griffon vulture [13].

The MEA was negative in all birds and there was no sex-related difference. The MEA values were reported before for avian species as +95° to -165° for Pekin ducks [24], -95° to -101° for macaws [16], -99.2° for buzzard [28], -64° to -120° for various free-living birds [31], -99.9° for peregrine falcon [16], -95° for rock partridges and -99.5° for chukar partridges [28], -88° for pigeons [13], -78° to -98° for raptors [17] and -96.8° for green peafowl [31]. As can be seen from the Table 2, the average MEA values in this study were negatives and were consistent with those reported in earlier studies mentioned above.

The ST segment represents the end of ventricular depolarization and the beginning of ventricular repolarization. The ST segment extends from the end of the QRS complex to the beginning of the T wave, and it is normally isoelectric. The normal ST segment may be slightly elevated above or depressed below the baseline. The amount of the elevation or depression is considered as abnormal when it is greater than 0.2 mV for dogs and 0.1 mV for cats [24], but there is no reported criterion for ST segment elevation and depression in any avian species. As another abnormal situation, ST segment slurring may be seen when the ST segment goes directly into the T wave without first straightening out even with the baseline, which ST slurring is frequently described with an undetermined cause in healthy birds [13,33]. In our study, the ST segment was almost identifiable in all tracings, and ST slurring was found in only one tracing. In agreement with previous ECG studies on other bird species [14,16,33,35], the ST segment mainly appeared elevated over baseline.

Some authors reported the fusion of P and T waves (P on T phenomenon) in various avian species possibly due to high heart rates [14,25,33]. We did not observe this phenomenon most likely because compared to the birds in the previously mentioned studies the pheasants in this study had lower HRs.
In conclusion, morphology, duration and amplitude of P, QRS and T waves, and heart rates and mean electrical axis of conscious pheasants show similarities and differences with the other avian species studied previously. These variations in avian species explain the need for the specific electrocardiographic patterns and reference values for all wild bird species. Hopefully, The ECG values and patterns derived from these clinically normal pheasants will provide a reference value data to help the diagnosis of cardiovascular abnormalities in this species.

ACKNOWLEDGMENTS

The authors thank to Dr. Erdem GÜLTİKEN and Beste DEMİRÇI for his help in obtaining birds, and Dr. Serhat ARSLAN for statistical advice.

REFERENCES