Effects of Aflatoxin on AgNOR Activity of Cells in Different Regions of Kidney, and Protective Effectiveness of Esterified Glucomannan in Ram

Fatma COLAKOGLU 1 Hasan Huseyin DONMEZ 1

[1] This study forms part of the PhD Thesis of Fatma KAYIKCI COLAKOGLU, for which we thank the "Selcuk University Scientific Research Projects (BAP) Coordinating Office", Project no: 09202023, and TUBITAK, Project No: 107O866, for financial support
[2] We are grateful to Prof. Dr. Mustafa ORTATATLI for contributions

1 Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Selcuk, TR-42075 Konya - TURKEY

Summary

In this study, the effects of total aflatoxin (AF) given orally on silver-staining nucleolus organizer regions (AgNORs) activity were studied in glomerulus and tubular epithelial cells of kidney in Merino rams. In addition, this study was conducted in order to evaluate the efficacy of an esterified glucomannan (EG) for protection against aflatoxicosis. As materials, 1 year-old 32 Merino rams were used. Rams were fed through the 92 days. Control group (C) fed with the commercial feed. AF group fed with commercial feed added 250 µg/day of total AF. EG group fed with commercial feed added 2 g/day of EG daily. AF+EG group fed with commercial feed added 250 µg/day of total AF and 2 g/day of EG. At the end of the 92nd day the animals were sacrificed, and tissue samples were taken from the kidneys. Whereas ratio of nuclear area of the AgNOR area of cells in examined regions of kidney was found decreased significantly (P<0.05) in the AF group compared to the control group, AF+EG group was found similar to control group (P>0.05). In conclusion, the adverse effects causing by aflatoxicosis on the kidney AgNOR activity could be ameliorated by adding EG to the ration.

Keywords: Aflatoxin, AgNOR, Glucomannan, Kidney, Ram

INTRODUCTION

One of the most important problems in human and animal nutrition is contamination of human foods and animal feeds with molds and mycotoxins 1. Aflatoxins are a group of mycotoxins produced by the strains of Aspergillus.
Effects of Aflatoxin on AgNOR

flavus and *A. parasiticus*. They are produced on cereal grains during growth, harvest, storage, or transportation. It is well known AFs are teratogenic, immunosuppression, mutagenic, and carcinogenic. There is evidence that it has harmful effects on the kidneys, though not as much as on the liver.

Prevention of feed and feedstuffs from possible mold growth and AF contamination is very important. Practical and cost-effective methods for detoxification of AF containing feed and feedstuff are in great demand. Since the early 1990s, the adsorbent-based several studies have been performed to detoxify AF in contaminated food and foodstuffs and to minimize the deleterious effects of AF. An approach to the problem has been the usage of non-nutritive and inert adsorbents in the diet to bind AF and reduce the absorption of AF from the gastrointestinal tract. The non-nutritive clays such as aluminosilicates, zeolites, bentonites, and clinoptilolite were preferred by the researchers. Recent years, researchers suggested that the best approach for decontamination would be biological degradation. Live yeast (*Saccharomyces cerevisiae*) initially used as a performance promoter in the early 1990s, was found to have beneficial effects on aflatoxicosis. Esterified glucomannan (EG) showed considerably high binding ability (80-97%) with AF, and it has been preferred for detoxification of AF in poultry animals.

Nucleolar-organizer regions (NORs) are loops of DNA containing ribosomal RNA genes. These regions can be easily stained with silver methods to appear as black dots (AgNORs) in the cell nucleus since they are argyrophilic. NORs are used by cytogeneticists for studying chromosomal disorders. This staining technique is very simple and does not require any special instruments or costly reagents. Additionally, the size, number and dispersion of the silver deposits on the NOR reflect the degree of transcriptional, nucleolar and proliferative activity of the cells. The aim of the study was to determine the effects of total AF given orally on AgNOR activity of cells in different regions of kidney in Merino rams. In addition, this study was conducted in order to evaluate the efficacy of EG for protection against aflatoxicosis.

MATERIAL and METHODS

Animals and Diet

Approval for the present study was obtained from the Animal Ethics Committee of the Faculty of Veterinary Medicine of the Selcuk University (2008/061). Thirty-two Merino rams were approximately purchased 1-year-old (12-14 months old). Animals were examined for general health. Antiparasitic ivermectin injection (Avromec-F, 1 ml/50 kg) and oksifendazol (oxa-F, 1 tablet/50 kg) were performed. In addition, enterotoxemia (Pluritoxiven-8, 1 ml) and smallpox vaccines were performed. For adaptation to the environment and the implementation of a new 15-day training program was applied to feeding. Individually weighted rams were divided into four equal groups. Experimental feeding was continued throughout ninety-two days. The rams were fed a commercial food (*Table 1*). Water and alfalfa were given *ad libitum*.

Experimental Design

The experimental design consisted of four dietary treatments. Control group (C) fed with the commercial feed. AF group fed with commercial feed added 250 µg/day of total AF. EG group fed with commercial feed added 2 g/day of EG (Alltech, Turkey). AF+EG group fed with commercial feed added 250 µg/day of total AF and 2 g/day of EG. AF dose was determined by the views of the researchers who were articles on the effects of AF and the pharmacologists who were studies on AF in our faculty. EG dose was also determined according to the dose in the prospectus (Alltech, Turkey). To make sure feed consumed, AF and EG that were mixed of 250 g commercial feed were given to animals before morning feeding and then morning feeding was continued.

Aflatoxin

The AF was produced from *Aspergillus parasiticus* NRRL 2999 culture (USA, Agricultural Research Service, Peoria, IL) via fermentation of rice by the method of Shotwell et al. with minor modifications by Demet et al. Fermented rice was sterilized in autoclave, dried at 70°C, and ground to a fine powder. According to the method reported by Vicam extraction and cleaning of AF in fermented rice was used immunoaffinity column (Down Test®; Vicam). The amount of AF carried out by high performance liquid chromatography (HPLC) according to the method reported by Stroka et al. The amount of total AF in the fermented rice was found 73.96 ppm. The AF within the rice consisted by Stroka et al.

Collection and Processing of Tissue Samples

At the end of the 92nd day, after sacrificed of the all animals.

Table 1. Composition of the commercial feed

<table>
<thead>
<tr>
<th>Chemical Composition</th>
<th>Percentage Rate</th>
<th>Chemical Composition</th>
<th>Percentage Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry matter</td>
<td>%88</td>
<td>Na</td>
<td>%0.1-0.4</td>
</tr>
<tr>
<td>Crude protein</td>
<td>%12</td>
<td>NaCl</td>
<td>%1.0</td>
</tr>
<tr>
<td>Crude Cellulose</td>
<td>%12</td>
<td>Metabolic energy</td>
<td>2750 kcal/kg</td>
</tr>
<tr>
<td>Crude ash</td>
<td>%9</td>
<td>Vit A</td>
<td>7000 IU-kg</td>
</tr>
<tr>
<td>Insoluble ash in HCL</td>
<td>%1.0</td>
<td>Vit D3</td>
<td>700 IU-kg</td>
</tr>
<tr>
<td>Ca</td>
<td>%0.6-1.6</td>
<td>Vit E</td>
<td>25 mg/kg</td>
</tr>
<tr>
<td>P</td>
<td>%0.4</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
tissue samples were taken from the kidney in 10% neutral-buffered formalin solution. The tissues were processed and paraffin sections (6 µm) were stained with a solution containing one volume of 2% gelatin in 1% aqueous formic acid and two volumes of 50% silver nitrate (Merck). The staining was performed at 37°C in the dark for 20-30 min. The histological preparations were examined with a light microscope (Leica DM-2500 attached to a DFC-320 digital camera). In different regions of the kidney (glomerulus, proximal tubules, distal tubules and collecting tubules) of each animal, 25 cells having nuclei were evaluated. The nuclear area and the AgNOR area (Fig. 1 and 2) were analyzed with an image analysis program (IM-50). Also, the percentage of the AgNOR area relative to the nuclear area was calculated.

Statistical Analysis

The obtained results were statistically analyzed using Duncan test in SPSS software [version 17; SPSS Inc., Chicago, IL, USA]. The level of significance was P<0.05.

RESULTS

We obtained the nuclear area (Table 2), the AgNOR area (Table 3), and the ratio of the nuclear of the AgNOR area (Table 4) of cells in different regions of the kidney. Nuclear areas and ratio of nuclear area of the AgNOR area of glomerulus and tubular epithelial cells of kidney decreased significantly (P<0.05) in the AF group compared to the other groups. Furthermore, AF group was lowest (P<0.05) AgNOR area.

DISCUSSION

The liver and kidney are considered the main target organ for aflatoxicosis. Lakkawar et al. reported that liver and kidney were the most affected organs in rabbits which fed an AFB-contaminated diet. The effects of AFs on histopathological changes are directly correlated with the concentration of AF and the duration of the exposure.
Effects of Aflatoxin on AgNOR

Nuclear areas of glomerulus and tubular epithelial cells were significantly (P<0.05) decreased in all regions of AF group compared to the C group. Measurements in glomerulus, distal and collecting tubule regions of AF+EG group were similar compared with the C group. But, it was observed that measurements in proximal tubule regions in AF+EG group were significantly (P<0.05) different compared with the C group. It was known that AFs have toxic effect on p53 gene which is a protective effect against DNA damage in cells. The findings of the study were showed that AF was significantly decreased nuclear areas of cells and formed negative impact on metabolic activity of cells.

AgNOR areas of glomerulus and tubular epithelial cells of kidney were similar with C and EG groups. We were observed AF group was lowest (P<0.05) AgNOR area. AgNOR area of AF+EG group was found statistically higher (P<0.05) than that of AF group. These data were in agreement with findings of the researches 37,38 who reported that AFs caused genetic disorders in cells. In this study, we found the lowest AgNOR area of the AF group since AF caused to modification 36 and reduce number of ribosome. Ultimately, this situation causes to reduce synthesis of proteins 37,38. On the other hand, AgNOR area of AF+EG group to be higher than those of AF group, it shows aflatoxin is relatively eliminated pressure on protein synthesis by EG.

The ratio of nuclear area of the AgNOR area of glomerulus and tubular epithelial cells of kidney decreased significantly (P<0.05) in the AF group compared to the other groups. This result reveals that AFs which are caused DNA damage 28,33,39 reduce activity of cell’s protein synthesis 37,38. Zaczek et al. 17 have reported that AgNOR parameters associated with the proliferation activity of the epithelium.

As a conclusion, reason of decline in protein synthesis activity of the cells, we can be said AF is partly eliminated the negative impact on the cells by used EG. We were concluded EG is an agent which can be used successfully to prevent aflatoxicosis. Obtained data are showed that there are important changes in the AgNOR parameters. Therefore, we think that AgNOR parameters will also utilize taking into account besides other histopathological assessments for future similar studies.
REFERENCES

