Investigations of Listeria Species in Milk and Silage Produced in Burdur Province [1]

Fulya TAŞÇI * /crayon Hulya TÜRÜTOĞLU ** Hatice ÖĞÜTÇÜ ***

[1] This study was supported by the Scientific Research Projects Fund of the Akdeniz University (Project No: 2005.01.0108.001)

* Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Food Hygiene and Technology, TR-15100 Burdur - TURKEY

** Mehmet Akif Ersoy University, Faculty of Veterinary Medicine, Department of Microbiology, TR-15100 Burdur - TURKEY

*** Ahi Evran University, Faculty of Sciences and Arts, Department of Biology, TR-40100 Kırşehir - TURKEY

Makale Kodu (Article Code): KVFD-2010-1744

Summary

The aim of this study was to investigate the presence of Listeria species in the milk and silage samples obtained from fifteen different farms in Burdur. A total of 250 samples (silage and cow’s milk obtained from animals fed and not fed with silage) were analyzed. L. monocytogenes was isolated in 6 (2.4%) out of the 250 samples. Five (6.66%) of the 75 silage samples and 1 (1.17%) of the 85 milk samples obtained from cows fed with silage were contaminated with L. monocytogenes, whereas no Listeria spp. were isolated from the 90 milk samples from cows not fed with silage. The isolation of L. monocytogenes from milk and silage samples in Burdur indicates that these products could create a serious risk to the public health.

Keywords: Cow’s milk, Silage, Listeria spp.

INTRODUCTION

Listeria spp. are widely distributed in nature and found in soil, silage, decaying vegetation, animal feces, sewage water, and other environmental sources 1. Listeria monocytogenes may contaminate milk because of mastitis, encephalitis, or abortion related to Listeria spp. in animals 2,3. Listeriosis is a severe and often fatal illness with clinical manifestations such as sepsis or meningitis in immunocompromised patients or neonatal babies and flu-like illness or abortion during pregnancy in women. The major outbreaks of listeriosis have been associated with the consumption of foods of animal origin 4. The genus Listeria contains 6 species: L.
improperly fermented silage with silage isolated from 2% to 6.1% milk samples from cows fed unpasteurized milk and milk products. L. monocytogenes can frequently be isolated from unpasteurized milk and milk products. Except in modern cheese production plants, raw milk is widely used in cheese production by small and medium domestic and commercial plants in Turkey. Also, isolation rate of L. monocytogenes in cheese samples in Turkey has been reported from 2% to 5%.

Silage is produced by harvesting a forage crop with a high moisture content (greater than 50%) and subsequently fermenting. In general, good silage remains stable, with no change in composition or heat, once air is eliminated and the silage has achieved a low pH. Listeria spp. are most commonly recovered from improperly fermented silage. It has been reported that listeriosis in cattle is mainly feed-borne and Listeria spp. have been detected from 1.2% to 60% of the silage samples. Also, Listeria spp. have been isolated from 2% to 6.1% milk samples from cows fed with silage. In a study by Fenlon et al., it has been stated that 29-31% of cattle started to shed L. monocytogenes after silage feeding.

The aim of this study was to investigate the presence of Listeria species in the milk and silage samples obtained from fifteen different farms in Burdur. The milk obtained from cows fed and not fed with silage were compared in terms of Listeria, and its importance in contamination of silage was put forward.

MATERIAL and METHODS

Sampling

Five research centers in Burdur were determined for sampling. Three different farms in each research center were visited every month between December 2007 and May 2008. In fifteen farms, seventy five silage samples, 85 milk samples obtained from cows fed with silage and 90 milk samples obtained from cows not fed with silage were collected. The samples were collected in sterile plastic bags and transported to the laboratory in boxes containing ice.

Isolation and Identification of Listeria spp.

All procedures were applied according to the FDA-Bacteriological Analytical Manual. All media used were obtained from Oxoid (Oxoid Ltd., Hampshire, UK). Each sample (25 g/ml) was taken and placed in a stomacher bag to which 225 ml of sterile Listeria Selective Enrichment Broth (Oxoid) was added and homogenized with a stomacher (Masticator, IUL Instruments-Spain) for 1-3 min and incubated at 30°C for 48 h. A loopful of homogenate was surface streaked in duplicate on Palcam agar (Oxoid) and Oxford agar (Oxoid). The Palcam plates were incubated at 37°C for 48 h under microaerophilic conditions and Oxford plates at 35°C for 48 h under aerobic conditions. All colonies surrounded by a brownish green and/or black halo were taken as possible Listeria spp. One suspected Listeria spp. colony from each plate was chosen and purified on tryptic soy agar (Oxoid CM 131) with 0.6% yeast extract (Oxoid L 21) and incubated at 30°C for 24-48 h for further biochemical characterization. Presumptive Listeria isolates were confirmed and identified at the species level based on Gram staining, typical umbrella motility in SIM medium (Oxoid CM 435), His production, indole, urease, catalase, oxidase reaction, β-hemolysis, nitrate reduction, methyl-red/voges-proskauer (Oxoid CM 43), CAMP tests and fermentation of mannitol, L-ribose, D-saccharose, sorbitol, dextrose, maltose, esculin, dulcitol and salicin. Serotyping of isolates was performed with Bacto-Listeria-O-antisera types 1 and 4 and poly (Difco Laboratories, Detroit, MI) by the slide agglutination test.

Measurement of pH Values of the Samples

After the samples were collected for microbiologic analysis, the pH values of the milk samples were measured with an electronic pH meter (Metrohm 704 pH Meter). A 25-g aliquot silage sample was blended with 100 ml of deionized water for 2 min and filtered through four layers of cheesecloth. Then the pH of the extract was measured.

Statistical Analysis: The results were analyzed using Minitab-15 with the chi-square analysis.

RESULTS

Overall, L. monocytogenes was found in 6 (2.4%) out of 250 samples. Five (6.66%) of the 75 silage samples and 1 (1.17%) of the 85 milk samples obtained from fed with silage were contaminated with L. monocytogenes, whereas no Listeria spp. were isolated from the 90 milk samples from cows not fed with silage. The differences between isolation rates of L. monocytogenes were statistically significant (χ²=8.02; P=0.018; P<0.05) (Table 1). Two selective plating media Palcam and Oxford were compared for isolating L. monocytogenes from the samples, and the isolation rates from these media were found to be equal.

In the present study, the pH values of the milk samples varied between 6.6 and 7.1, and the pH values...
of the silage varied between 4.1 and 8.7. In the silage samples contaminated with *L. monocytogenes*, the pH values varied between 5.1 and 8.3, and the pH value of the milk sample contaminated with *L. monocytogenes* was 6.9.

As the collection period of the milk and silage samples was compared in isolation, the contamination of *L. monocytogenes* was found higher in March (3 silage samples) than in January (2 silage samples) and February (1 milk sample from the cows fed with silage).

In this study, for the serotype determination of 6 isolates defined as *L. monocytogenes* Difco Bacto O Antiserum type 1 and type 4, and type poly were used. The results were as follows: 5 isolates (1 milk and 4 silage samples) type poly and type 4, 1 isolate (1 milk sample) type poly.

DISCUSSION

The isolation rates of *Listeria* spp. in silage has been demonstrated in several studies carried out in Turkey and in other countries. In this study, *L. monocytogenes* was detected in 6.66% of the 75 silage samples. This percentage is lower than the results reported by Oliveira et al. and Grønstøl, but similar to the 6.1% obtained by Vilar et al. In Turkey, Aslantaş and Yıldız isolated *L. monocytogenes* from 1 of 11 silage samples. However, Şahin et al. did not isolated *L. monocytogenes* from the silage, but isolated *L. welshimeri* and *L. grayi*. In this study, the low isolation rate of *L. monocytogenes* in silage may be accounted that high-quality silage is produced by mostly producers. However, in our study, silage samples contaminated with *L. monocytogenes* was obtained only from wet silage. In the illumination of this result, we cold say that and rainy weather conditions are the cause of this result.

Many researchers have investigated *L. monocytogenes* contamination of milk and silage and *Listeria* species have been detected from 0.40% to 10% of milk samples. In Turkey, the isolation rates from raw milk samples have been reported 0.45% in Istanbul, 0.94% in Ankara, 1.20% in Van, 3% in West Anatolia and 5% in Ankara. In other countries, the reported isolation rates from bulk tank milk samples were 1.2% in Pennsylvania, 4.9% in Ireland and 6.5% in the United States. The sources of *Listeria* spp. in raw milk have been reported to be fecal and environmental contamination during the milking, storage, and transport of infected cows on dairy farms, and poor silage quality.

In the present study, *Listeria* species were not found from cow’s milk samples not fed silage. But, 1.17% of the milk samples obtained from cows fed with silage were contaminated with *L. monocytogenes*. However, Şahin et al. have reported that *L. monocytogenes* was not isolated from the silage and milk samples of cows fed with silage, but *L. welshimeri* and *L. grayi* were isolated. Vilar et al. detected *Listeria* spp. in 33.7% of silage samples and in 16.3% of milk samples. Donnelly observed that 8 of 44 Holstein cows fed *Listeria*-contaminated silage shed the organism in their milk. Furthermore, milk from these animals was free of *L. monocytogenes* one month after feeding of contaminated silage ceased.

In our study, two selective plating media Palcam and Oxford were compared for isolating of *L. monocytogenes* from the samples, and the isolation rates from these media were found to be equal, which is consistent with the reports by Art and Andre, Capita et al. and Uysal and Ang.

L. monocytogenes has thirteen serotypes, but, only three serotypes-4b, 1/2a and 1/2b-are responsible for the majority of veterinary and human listeriosis cases. In this study, for the serotype determination of 6 isolates defined as *L. monocytogenes*, O Antiserum type 1 and type 4, and type poly were used. The results were as follows: 5 isolates (1 milk and 4 silage samples) type poly and type 4, 1 isolate (1 milk sample) type poly.

Multiple studies have reported seasonal variations of *Listeria* spp. isolation, some report that contamination rates increase during the summer months, while others reported increased rates during winter. Gaya et al.

<table>
<thead>
<tr>
<th>Sample Type and Number (n)</th>
<th>L. monocytogenes</th>
<th>n</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silage (n: 75)</td>
<td></td>
<td>5</td>
<td>6.66</td>
</tr>
<tr>
<td>The milk of cows fed with silage (n: 85)</td>
<td></td>
<td>1</td>
<td>1.17</td>
</tr>
<tr>
<td>The milk of cows not fed with silage (n: 90)</td>
<td></td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total (n: 250)</td>
<td></td>
<td>6</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Chi-square statistic is significant, χ²=8.02; P=0.018; P<0.05
with pH values higher than 4.0, which allows the quality silage, subjected to inadequate fermentation, sources of greater than 6.6. We believe that the contamination samples cannot be avoided. In our study, the pH value of the milk and silage in 11 of 31 high-quality silage samples with pHs of 3.6 to 4.0. In young in late winter or early spring. During winter gestation, dairy cattle develop a weakened immune system as a direct result of pregnancy, which, in turn, makes these animals more susceptible to listerial infections and abortions.

The pH values of the silage samples from which Listeria spp. were isolated ranged from 5.1 to 8.3. Different range from those observed in other studies were 3.8 to 5.2 in Rea et al., 5.78 to 5.89 in Ryser et al., and 4.47 to 6.97 in Vilar et al. A variety of studies have confirmed that L. monocytogenes contamination is most frequently associated with poor-quality silage. Poorly fermented silage, which has a pH greater than 5.5, is ideal for Listeria growth. However, Fensterbank et al. identified Listeria spp, including L. monocytogenes, in 11 of 31 high-quality silage samples with pHs of 3.6 to 4.0. In our study, the pH value of the milk and silage samples contaminated with L. monocytogenes was greater than 6.6. We believe that the contamination sources of Listeria spp. are the consumption of bad-quality silage, subjected to inadequate fermentation, with pH values higher than 4.0, which allows the multiplication of Listeria spp.

As a conclusion, the isolation of L. monocytogenes from milk and silage samples in Burdur indicates that these products can create a serious risk to the public health and could have a potential risk for animals. Correct practices with respect to silage production and milking are essential for preventing introduction of Listeria into the herd, its spread within the herd, and its entry into milk. The risk of contamination of milk by Listeria spp. increased when animals were fed low-quality silage, notably silage with pH ≥4.5. Although the contamination ratio is very low in this research, Listeria contamination must be obstructed or minimized to achieve standard conditions.

REFERENCES

