Determination of Aflatoxin M₁ Level in Butter Samples Consumed in Erzurum, Turkey

Meryem AYDEMİR ATASEVER * Mustafa ATASEVER *
Korhan ÖZTURAN ** Sevda URÇAR *

* Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Ataturk University, TR-25240 Erzurum - TURKEY
** Ninth Army Cops "A" Type Food Control Detachment Commandery, Erzurum - TURKEY

Summary
In this study; the levels of aflatoxin M₁ (AFM₁) in 80 butter samples were determined. They were obtained from supermarkets in city center of Erzurum. The presence and concentration range of AFM₁ in the samples were investigated by competitive enzyme-linked immunoabsorbent assay (ELISA) method. AFM₁ was found in 66 (82.5%) samples at levels ranging from 10 to 121 ng/kg with mean concentration of 30.4±23.9 ng/kg. The levels of AFM₁ in 13 (16.3%) samples were higher than the maximum legal limit accepted by Codex Alimentarius Commission (CAC). None of the contaminated butter sample exceeded the legal limit regulated by Turkish Food Codex (TFC) for AFM₁. The results indicated that contamination of the butter samples with AFM₁ in high level could be a potential hazard for public health.

Keywords: Aflatoxin M₁, Butter, ELISA

INTRODUCTION
Aflatoxin is a family of highly toxic and carcinogenic fungal metabolites produced by Aspergillus flavus and Aspergillus parasiticus and the rare A. nomius fungi. A. flavus produces only B aflatoxins, while the other two species produce both B and G aflatoxins. Aflatoxin M₁ (AFM₁) is the principal hydroxylated aflatoxin metabolite in the milk of dairy cows fed contaminated feed with aflatoxin B₁ (AFB₁). These toxins show a serious risk for animal and human health, particularly for children, who are the major milk consumers. It has been reported several effects of aflatoxins on health such as hepatotoxic, genotoxic, carcinogenic, teratogenic, immuno-
suppressive and antinutritional \(^1\).

AFM\(_1\) is mainly soluble in the aqueous phase of milk or adsorbed to casein particles; information of several studies show that a small ratio of AFM\(_1\) in milk is carried-over to cream, and yet a smaller proportion to butter. The remainder of AFM\(_1\) in milk, however, remains in skim milk and buttermilk \(^3\).

To protect consumers, several countries have established legislation to regulate the levels of mycotoxins \(^4,5\). Several factors may influence the establishment of mycotoxin limits and regulations. These include scientific factors such as the availability of toxicological data and survey data, knowledge about the distribution of mycotoxin in commodities, and analytical methodology. Economical and political factors such as commercial interests and sufficiency of food supply have their impact as well \(^6\). The Codex Alimentarius Commission (CAC) \(^7\) has set a limit of 50 ng/kg for AFM\(_1\) in milk products while the Turkish Food Codex \(^8\) prescribed the maximum level for AFM\(_1\) in milk products 10-fold higher (500 ng/l) than the current level in the CAC.

Dairy products have been produced and consumed widely in Turkey. Owing to the common presence and harmful effects of aflatoxin contamination, there is a need for detection and measurement of AFM\(_1\) in dairy products. Ascribed to scientific literature, very few studies \(^9-12\) have been published on the presence and level of AFM\(_1\) in milk and dairy products in Turkey. The present study has been designed to investigate the presence of AFM\(_1\) in butter and to compare the results with the maximum AFM\(_1\) tolerance limits which are accepted by the CAC and TFC.

MATERIAL and METHODS

Samples

A total of 80 butter samples were obtained randomly from supermarkets between September 2007 and September 2009 in Erzurum city. The samples were transported to the laboratory in an insulated container at about 4°C and analyzed upon arrival.

Analysis of AFM\(_1\) by ELISA

The quantitative analysis of AFM\(_1\) in the butter samples was performed by competitive enzyme immunoassay using RIDASCREEN Aflatoxin M\(_1\) 30/15 (Art. No: R1111, R-Biopharm, Darmstadt, Germany) \(^13\) test kit. Immunoaffinity column (Rida Aflatoxin Column Art. No: R5001/5002) \(^14\) were used to run ELISA analyses.

Evaluation

The samples were evaluated according to the RIDAVIN computer program prepared by R-Biopharm. According to the instructions for use of the RIDASCREEN kit; the lower detection limit was 5 ng/kg.

RESULTS

In this study, a total of 80 butter samples were analysed for AFM\(_1\) with the competitive ELISA. The presence and the distribution of AFM\(_1\) concentration in various ranges in butter samples are presented in Table 1. As shown in Table 1, AFM\(_1\) was detected in 66 of 80 of the butter samples above the detectable level of 5 ng/kg. In total 16.3% of AFM\(_1\)-contaminated samples exceeded the CAC regulation (50 ng/kg). However, none of the contaminated butter sample exceeded the limit (500 ng/kg) reported by TFC for AFM\(_1\). Quantity
The concentration of AFM1 in butter samples ranged from 10 to 121 ng/kg while the mean value was 30.4 ng/kg (Table 1).

Table 1. Presence and distribution of AFM1 in butter samples

<table>
<thead>
<tr>
<th>Kind of Samples</th>
<th>Samples Tested (n)</th>
<th>Proportion of Positive Samples (n (%))</th>
<th>Distribution of Samples * n (%)</th>
<th>Proportion of Samples Exceeding the CAC Legal Limit >50 ng/kg</th>
<th>Proportion of Samples Exceeding the TFC >500 ng/kg</th>
<th>Quantity of AFM1 (ng/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butter</td>
<td>80</td>
<td>(82.5)</td>
<td><5* (17.5) 5-25 (28.8) 26-50 (37.5) 51-100 (15) >100 (1.3) (16.3) ND</td>
<td>ND</td>
<td>ND</td>
<td>30.4±23.9 10 121</td>
</tr>
</tbody>
</table>

* distribution of negative samples, ng/kg, CAC: Codex Alimentarious Commission, TFC: Turkish Food Codex, (): indicates percent, ND: Not Detected, x±Sx: mean±standard deviation

Table 2. Aflatoxin M1 contents of butter reported in previous studies

<table>
<thead>
<tr>
<th>Sample</th>
<th>Country</th>
<th>No. of Samples Positive (ng/kg)</th>
<th>Range of Samples Positive (ng/kg)</th>
<th>Exceed Legal Limit *</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Butter</td>
<td>Turkey</td>
<td>92/92 (100) 5/5 (100) 52/61 (81) 25/27 (92.6)</td>
<td>10-7000 13.5-16.6 1-100</td>
<td>26/92 (28.3) 0/5 (0) 10/61 (16.4) 10/27 (3.7)</td>
<td>Tekinsen and Ucar 18 Bakirci 19 Aycicek et al. 15</td>
</tr>
</tbody>
</table>

* CAC limits in butter is 50 ng/kg, ND: Not Detected, (): indicates percent

DISCUSSION

Dairy products play a significant role in human diet since they are rich sources of bioavailable calcium and proteins. However, many of the previous studies indicate the presence of AFM1 at high concentrations in dairy products.5,9-12

A few studies in Turkey have addressed the issue of AFM1 contamination of butter. AFM1 levels determined in the butter consumed in Turkey by previous reports are indicated in Table 2.

As shown in Table 1, AFM1 was detected in 82.5% of the butter samples. These results are in parallel with the findings of Aycicek et al.15,18. In present study the contamination level of AFM1(as incidence) in butter samples was found to be low as compared to the results of earlier studies in the same area.17,18 In a study by Tekinsen and Ucar,18 the number of AFM1 positive butter samples as well as the maximum AFM1 level is higher than the values reported in our study. These differences might be due to the differences in the AFM1 levels in the milk from which the butter is produced and in the processing method of milk or due to the differences in the methods of analysis.20 Moreover, differences in the hygiene and storage conditions at the dairies and sales department are other factors on the variations of the results.18,20,21 In addition, the AFM1 level in the milk was significantly affected by the geographical region and the country.25 The lower incidence of AFM1 found in butter samples may due to the number of samples analysed than other researches done in Turkey.

In this study, AFM1 concentration in contaminated butter samples exceeding CAC legal limit was lower than the results reported by Tekinsen and Ucar18 and were higher than the results reported by Bakirci17 and Aycicek et al.16. Similarly, results reported by Aycicek et al.15 indicated that 10/61 (16.4%) samples had levels higher than CAC regulation.

The TFC has updated the maximum allowable AFM1 limit as 500 ng/kg for the foodstuff that has a potential to contain aflatoxin. This limit have been 50 ng/kg in the previous years. In the previous studies, the number of samples exceeding the Turkish legal limits has been high owing to that reason. The fact that no samples exceeding the legal limits regulated by the TFC encountered in our study is partially due to that reason. The recent limits put forward by the latest regulations are thought to be considerably high (10 times higher than that of the CAC limits) and a re-consideration of this arrangement is
thought to be required.

Shortly, the results of this study show that there is a risk from butter produced from milk obtained from animals fed with contaminated animals feed with aflatoxins, since all the age groups including infants and children consume milk and dairy products daily. The AFM1 level of butter samples is closely related to the aflatoxins concentration in milk used for butter production and other related factors. Therefore the prevention of aflatoxin formation in feeds is very important. Avoiding contamination appears to be the only practical way to ensure the safety of milk and milk products for human consumption. For this reason, it is considered that food substances should be produced from healthy raw material and kept in convenient conditions to prevent aflatoxin formation.

REFERENCES

