Immunohistochemical Localization of Serotonin–, Gastrin–, and Somatostatin–immunoreactive Endocrine Cells in the Duodenum of the Rat (Wistar albino)

Ebru KARADAĞ SARI* Mumtaz NAZLI* Hakan KOCAMIŞ*
Nurhayat GÜLMEZ* Şahin ASLAN* Turgay DEPREM*

Summary
Most of the gastrointestinal hormones are produced in the small intestine particularly in the duodenal mucosa. The objective of the current study was to investigate the distribution of the serotonin–, gastrin–, and somatostatin–immunoreactive endocrine cells in the duodenum of rat by immunohistochemical techniques using antisera against serotonin, gastrin, and somatostatin. Numerous serotonin–immunoreactive cells, and very few gastrin–, and somatostatin–immunoreactive cells were seen in the rat duodenum.

Keywords: Immunohistochemistry, Duodenum, Rat

Serotonin–, Gastrin–, ve Somatostatin–immunoreaktif Endocrin Hücrelerin Rat (Wistar albino) Duodenumunda İmmunohistokimyasal Lokalizasyonu

Özet

Anahtar sözcükler: İmmunohistokimya, Duodenum, Rat
INTRODUCTION

The gastrointestinal tract is lined with a monolayer of cells that undergo perpetual and rapid renewal. Four principal, terminally differentiated cell types populate the monolayer, enterocytes, goblet cells, Paneth cells, and enteroendocrine cells. Gastrointestinal endocrine cells dispersed through the epithelia and gastric glands of the alimentary tract synthesize various kinds of gastrointestinal hormones. Most of these hormones are produced in the small intestine particularly in the duodenal mucosa. At least 10 different endocrine cell types have been described in the small intestine of mammals. Gastrointestinal hormones as regulatory peptides that appear to be major components of bodily integration and have important regulatory actions on physiological function of the gastrointestinal tract.

The recent developments of immunohistochemical procedures and the specific antibodies raised against peptides have led researchers to revealing the existence of different endocrine cells in the intestine, each of which synthesises and stores a distinct peptide hormone or biogenic amine.

The objective of the current study was to investigate the distribution of the serotonin-, gastrin-, and somatostatin-immunoreactive endocrine cells in the duodenum of rat by immunohistochemistry using antisera against serotonin, gastrin, and somatostatin.

MATERIALS and METHODS

In this study, ten adult rats were used without any sexual distinction. Tissue specimens were dissected under deep ethyl ether anaesthesia from the duodenum of these rats. Samples from the duodenum were fixed Bouin’s solution. After paraffin embedding, 5-6μ serial sections were prepared.

Each section was deparaffinized, rehydrated and immunostained with the avidin-biotin-complex (ABC) method. The endogeneous peroxidase and non-specific binding sites for antibodies were supressed by treating sections with 0.5% hydrogen peroxide for 30 min and 10% normal rabbit serum for 10 min at room temperature, respectively. Furthermore, sections were processed for standart immunohistochemical techniques. The working dilutions and the sources of antibodies used are listed in the table. Negative controls were carried out by incubating sections with phosphate-buffered saline (PBS) instead of the primer antiserum. Positive controls were also conducted with tissue sections from the gastrointestinal tract of rabbits known to contain the hormones studied. The sections were incubated in primary antiser a in PBS-containing bovine serum albumin (2.5%) and Triton X-100 (0.2%) for 1 hour at room temperature. Subsequently, the binding of primary antiser a was detected using rabbit-antimouse antiser a and Strept ABC. Finally the chromogen protocol was used the reveal the distribution of bound peroxidase.

RESULTS

Immunohistochemical procedures led to the identification of endocrine cells immunoreactive to serotonin, gastrin and somatostatin in the rat duodenum. Serotonin-, gastrin-, and somatostatin-immunoreactive cells were observed in the duodenum of the rat. Some of these endocrine cells had apical cytoplasmic processes that extended to the glandular or intestinal lumen. The frequency of these immunoreactive cells in the duodenum are shown in the Table 2.

Serotonin-immunoreactive endocrine cells were monitored localizing over the crypts and the villi epithelium. These cells were triangular, irregular or bipolar in shape. Serotonin-immunoreactive cells were highest frequency in the duodenum (Figure 1).
Gastrin-immunoreactive endocrine cells were situated in the duodenal mucosa at very low frequencies. These immunoreactive cells were bipolar or triangular in shape (Figure 2).

Only very few somatostatin-immunoreactive endocrine cells were located in the duodenal mucosa. They were particularly localized in the duodenal glands. These immunoreactive cells were irregular or bipolar in shape (Figure 3).

Table 2. The frequency of the endocrine cells in the duodenal mucosa of the rats

<table>
<thead>
<tr>
<th>Antisera</th>
<th>Duodenal mucosa</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serotonin</td>
<td>++</td>
</tr>
<tr>
<td>Gastrin</td>
<td>+</td>
</tr>
<tr>
<td>Somatostatin</td>
<td>+</td>
</tr>
</tbody>
</table>

The frequency: ‘+’ : 1-10 immunoreactive cells , ‘++’: 10-20 immunoreactive cells.
DISCUSSION

In the current study serotonin-, gastrin-, and somatostatin-immunoreactive cells were observed in the duodenum of the rat.

Serotonin consists of monoamines and widely distributed in the nervous system and gastro-entero-pancreatic endocrine cells. The main function of serotonin are the inhibition of gastric acid secretion and smooth muscle contraction in the gastrointestinal tract. It has been reported that serotonin-immunoreactive cells are a moderate number in philippine carabao, low number in wild boar duodenum. It has also been reported that numerous serotonin-immunoreactive cells are distributed over the epithelium of both crypts and villi in the ruminant duodenum. The results of our study are in parallel with Mimoda et al. findings.

Gastrin is heptadecapeptide with 17 amino acids. Gastrin is mostly distributed in the mucosa of gastric antrum, the mucosa of the jejunum and the central nervous system. Gastrin has a wide range of biological actions. The most potent actions of gastrin are stimulation of gastric acid secretion. Our findings are general agreement with the data reported in most of the avian and mammalian species in terms of gastrin-immunoreactive cells distribution. However it has been reported that gastrin-immunoreactive cell was not found in the duodenal mucosa of the freshwater turtle.

Somatostatin was isolated from the hypothalamus of sheep for the first time. Somatostatin is produced by endocrine-like (D cells) of the gut and pancreas and peripheral nerves. Somatostatin appears to inhibit the secretion of the many gastrointestinal hormones and may be an important regulator for gastrointestinal functions. It has been described that somatostatin-containing cells could occasionally be found in the submucosal glands of the duodenum. In this study somatostatin-immunoreactive cells were seen especially in the duodenal glands of the rat duodenum. The heterogeneity and concentration of endocrine cells in the duodenum may be related to the regulation of the secretion of the pancreatic juice and bile as well as the control of the function of the stomach and the small intestine. In conclusion serotonin-, gastrin-, and somatostatin-immunoreactive cells were monitored in the duodenum mucosa in the rat.

REFERENCES

